Effective results on nonlinear ergodic averages in CAT spaces
نویسندگان
چکیده
منابع مشابه
Pointwise Convergence of Ergodic Averages in Orlicz Spaces
converge a.e. for all f in L log log(L) but fail to have a finite limit for an f ∈ L. In fact, we show that for each Orlicz space properly contained in L, 1 ≤ q < ∞, there is a sequence along which the ergodic averages converge for functions in the Orlicz space, but diverge for all f ∈ L . This extends the work of K. Reinhold, who, building on the work of A. Bellow, constructed a sequence for w...
متن کاملConvergence of Diagonal Ergodic Averages
The case l = 1 is the mean ergodic theorem, and the result can be viewed as a generalization of that theorem. The l = 2 case was proven by Conze and Lesigne [Conze and Lesigne, 1984], and various special cases for higher l have been shown by Zhang [Zhang, 1996], Frantzikinakis and Kra [Frantzikinakis and Kra, 2005], Lesigne [Lesigne, 1993], and Host and Kra [Host and Kra, 2005]. Tao’s argument ...
متن کاملLocal Stability of Ergodic Averages
We consider the extent to which one can compute bounds on the rate of convergence of a sequence of ergodic averages. It is not difficult to construct an example of a computable Lebesgue-measure preserving transformation of [0, 1] and a characteristic function f = χA such that the ergodic averages Anf do not converge to a computable element of L ([0, 1]). In particular, there is no computable bo...
متن کاملErgodic averages with deterministic weights
i.e., there exists a constant C such that SN(θ, u) ≤ CN . We define δ(θ, u) to be the infimum of the δ satisfying H1 for θ and u. About H1, in the case where θ takes its values in U (the set of complex numbers of modulus 1), it is clear that for all sequences θ and u, δ(θ, u) is smaller than or equal to 1 and it is well-known (see [Ka] for example) that it is greater than or equal to 1/2. Few e...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ergodic Theory and Dynamical Systems
سال: 2015
ISSN: 0143-3857,1469-4417
DOI: 10.1017/etds.2015.31